E6: Compound Angles & Equivalent Forms
Home > A-Level Maths > 2nd Year Only > E: Trigonometry > E6: Compound Angles & Equivalent Forms
From the DfE Mathematics AS and A-Level Content (LINK):
Compound Angle Formulae
Compound Angle Formulae
E6-01 Compound Angles: Proving the Compound Angle Formulae
E6-01 Compound Angles: Proving the Compound Angle Formulae
E6-02 Compound Angles: Exact Values of sin(105°), cos(150°) & tan(15°)
E6-02 Compound Angles: Exact Values of sin(105°), cos(150°) & tan(15°)
E6-03 Compound Angles: Using the Formulae Backwards
E6-03 Compound Angles: Using the Formulae Backwards
Double Angle Formulae
Double Angle Formulae
E6-04 Compound Angles: Introducing the Double Angle Formulae
E6-04 Compound Angles: Introducing the Double Angle Formulae
E6-05 Compound Angles: Using Double Angle Formulae to Integrate
E6-05 Compound Angles: Using Double Angle Formulae to Integrate
E6-06 Compound Angles: Using Double Angle Formulae to Solve Equations
E6-06 Compound Angles: Using Double Angle Formulae to Solve Equations
E6-07 Compound Angles: More Equations using Double Angle Formulae
E6-07 Compound Angles: More Equations using Double Angle Formulae
E6-08 Compound Angles: EXTENSION Triple Angle Formulae
E6-08 Compound Angles: EXTENSION Triple Angle Formulae
Equivalent Forms
Equivalent Forms
E6-09 Equivalent Forms: Writing acosθ + bsinθ in the form rcos(θ±α) or rsin(θ±α)
E6-09 Equivalent Forms: Writing acosθ + bsinθ in the form rcos(θ±α) or rsin(θ±α)
E6-10 Equivalent Forms: Writing 4cosθ + 3sinθ in the form rsin(θ+ɑ)
E6-10 Equivalent Forms: Writing 4cosθ + 3sinθ in the form rsin(θ+ɑ)
E6-11 Equivalent Forms: Writing 3cosθ - 8sinθ in the form rcos(θ+ɑ)
E6-11 Equivalent Forms: Writing 3cosθ - 8sinθ in the form rcos(θ+ɑ)
E6-12 Equivalent Forms: Solve 10sinθ - 6cosθ = 5
E6-12 Equivalent Forms: Solve 10sinθ - 6cosθ = 5
E6-13 Equivalent Forms: Maximums and Minimums
E6-13 Equivalent Forms: Maximums and Minimums
E6-14 Equivalent Forms: Solve 2sin(2x) + 3cos(2x) = 1
E6-14 Equivalent Forms: Solve 2sin(2x) + 3cos(2x) = 1