E4: Further Trigonometry
Home > A-Level Maths > 2nd Year Only > E: Trigonometry > E4: Further Trigonometry
Cosec(x), Sec(x) and Cot(x)
Cosec(x), Sec(x) and Cot(x)
E4-01 Trigonometry: Introducing cosec(x), sec(x) & cot(x)
E4-01 Trigonometry: Introducing cosec(x), sec(x) & cot(x)
E4-02 Trigonometry: Given sin(x) = 3/7, exact values of cosec(x), sec(x) & cot(x)
E4-02 Trigonometry: Given sin(x) = 3/7, exact values of cosec(x), sec(x) & cot(x)
Sketching cosec(x), sec(x) and cot(x)
Sketching cosec(x), sec(x) and cot(x)
E4-03 Trigonometry: Sketching y = cosec(x)
E4-03 Trigonometry: Sketching y = cosec(x)
E4-04 Trigonometry: Sketching y = sec(x)
E4-04 Trigonometry: Sketching y = sec(x)
E4-05 Trigonometry: Sketching y = cot(x)
E4-05 Trigonometry: Sketching y = cot(x)
E4-06 Trigonometry: Transformations of y = cosec(x), y = sec(x) & y = cot(x)
E4-06 Trigonometry: Transformations of y = cosec(x), y = sec(x) & y = cot(x)
Inverse Trigonometric Functions
Inverse Trigonometric Functions
E4-07 Trigonometry: Why we Restrict the Domain to find an Inverse Function
E4-07 Trigonometry: Why we Restrict the Domain to find an Inverse Function
E4-08 Trigonometry: Introducing Arcsin(x)
E4-08 Trigonometry: Introducing Arcsin(x)
E4-09 Trigonometry: Introducing Arccos(x)
E4-09 Trigonometry: Introducing Arccos(x)
E4-10 Trigonometry: Introducing Arctan(x)
E4-10 Trigonometry: Introducing Arctan(x)
E4-11 Trigonometry: Transformations of Arcsin(x), Arccos(x) & Arctan(x)
E4-11 Trigonometry: Transformations of Arcsin(x), Arccos(x) & Arctan(x)
E4-12 Trigonometry: cos(arcsin(x)), tan(arccos(x)), cos(arctan(x))
E4-12 Trigonometry: cos(arcsin(x)), tan(arccos(x)), cos(arctan(x))