Search this site
Embedded Files
TLMaths
  • Home
    • A-Level Maths
      • AS ONLY
        • A: Proof
          • A1. Proof
        • B: Algebra & Functions
          • B1. Indices
          • B2. Surds
          • B3: Quadratics
          • B4: Simultaneous Equations
          • B5: Inequalities
          • B6: Polynomials
          • B7: Graphs & Proportion
          • B9: Graph Transformations
        • C: Coordinate Geometry
          • C1: Coordinate Geometry
          • C2: Circles
        • D: Sequences & Series
          • D1: Binomial Expansion
        • E: Trigonometry
          • E1: Trigonometry
          • E3: Trig Graphs
          • E5: Trigonometric Identities
          • E7: Trig Equations
        • F: Exponentials & Logarithms
          • F1: Exponentials
          • F2: Exponential Models
          • F3: Logarithms
          • F4: Laws of Logarithms
          • F5: Exponential & Logarithmic Equations
          • F6: Reduction to Linear Form
          • F7: Exponential Growth & Decay
        • G: Differentiation
          • G1: Differentiation from First Principles
          • G2: Differentiation
          • G3: Gradients
        • H: Integration
          • H1: Fundamental Theorem of Calculus
          • H2: Indefinite Integrals
          • H3: Definite Integrals
        • J: Vectors
          • J1: Introducing Vectors
          • J2: Magnitude & Direction of a Vector
          • J3: Resultant & Parallel Vectors
          • J4: Position Vectors
          • J5: Vector Problems
        • K: Statistical Sampling
          • K1: The Large Data Set & Sampling Methods
        • L: Data Presentation & Interpretation
          • L1: Box Plots, Cumulative Frequency & Histograms
          • L2: Scatter Graphs
          • L3: Central Tendency & Variation
          • L4: Outliers & Cleaning Data
        • M: Probability
          • M1: Venn Diagrams, Tree Diagrams & Two-Way Tables
        • N: Statistical Distributions
          • N1: Discrete Random Variables & The Binomial Distribution
        • O: Hypothesis Testing
          • O1: Introducing Hypothesis Testing
          • O2: Binomial Hypothesis Testing
        • P: Quantities & Units in Mechanics
          • P1: Quantities & Units in Mechanics
        • Q: Kinematics
          • Q1: Displacement, Velocity & Acceleration
          • Q2: Graphs of Motion
          • Q3: SUVAT
          • Q4: Calculus in Kinematics
        • R: Forces & Newton's Laws
          • R1: Introducing Forces & Newton's First Law
          • R2: Newton's Second Law
          • R3: Weight and Tension
          • R4: Newton's Third Law and Pulleys
      • 2nd Year ONLY
        • A: Proof
          • A1: Proof
        • B: Algebra & Functions
          • B6: Polynomials & Rational Expressions
          • B7: Graphs & Proportion
          • B8: Functions
          • B9: Graph Transformations
          • B10: Algebraic Fractions
          • B11: Modelling
        • C: Coordinate Geometry
          • C3: Parametric Equations
          • C4: Parametric Equation Modelling
        • D: Sequences & Series
          • D1: Binomial Expansion
          • D2: Sequences
          • D3: Sigma Notation
          • D4: Arithmetic Sequences
          • D5: Geometric Sequences
          • D6: Modelling with Sequences
        • E: Trigonometry
          • E1: Trigonometry
          • E2: Small Angle Approximation
          • E3: Trig Graphs
          • E4: Further Trigonometry
          • E5: Trigonometric Identities
          • E6: Compound Angles & Equivalent Forms
          • E7: Trig Equations
          • E8: Proving Trigonometric Identities
          • E9: Trigonometry in Context
        • G: Differentiation
          • G1: Differentiation from First Principles
          • G2: Differentiation
          • G3: Gradients
          • G4: Further Differentiation
          • G5: Implicit Differentiation & Parametric Differentiation
          • G6: Forming Differential Equations
        • H: Integration
          • H2: Indefinite Integrals
          • H3: Definite Integrals & Parametric Integration
          • H4: Integration as the Limit of a Sum
          • H5: Further Integration
          • H6: Integration with Partial Fractions
          • H7: Differential Equations
          • H8: Differential Equations in Context
        • I: Numerical Methods
          • I1: The Change of Sign Method
          • I2: The x=g(x) Method & The Newton-Raphson Method
          • I3: Numerical Integration
          • I4: Numerical Methods in Context
        • J: Vectors
          • J1: Introducing Vectors
          • J2: Magnitude & Direction of a Vector
          • J5: Vector Problems
        • M: Probability
          • M2: Conditional Probability
          • M3: Modelling with Probability
        • N: Statistical Distributions
          • N2: The Normal Distribution
          • N3: Appropriate Distributions
        • O: Hypothesis Testing
          • O1: Introducing Hypothesis Testing
          • O3: Sample Means Hypothesis Testing
        • P: Quantities & Units in Mechanics
          • P1: Quantities & Units in Mechanics
        • Q: Kinematics
          • Q3: SUVAT
          • Q4: Calculus in Kinematics
          • Q5: Projectiles
        • R: Forces and Newton's Laws
          • R1: Introducing Forces & Newton's First Law
          • R2: Newton's Second Law
          • R4: Newton's Third Law and Pulleys
          • R5: F=ma & Differential Equations
          • R6: The Coefficient of Friction
        • S: Moments
          • S1: Moments
      • FULL A-Level
        • A: Proof
          • A1: Proof
        • B: Algebra & Functions
          • B1: Indices
          • B2: Surds
          • B3: Quadratics
          • B4: Simultaneous Equations
          • B5: Inequalities
          • B6: Polynomials & Rational Expressions
          • B7: Graphs & Proportion
          • B8: Functions
          • B9: Graph Transformations
          • B10: Algebraic Fractions
          • B11: Modelling
        • C: Coordinate Geometry
          • C1: Coordinate Geometry
          • C2: Circles
          • C3: Parametric Equations
          • C4: Parametric Equation Modelling
        • D: Sequences & Series
          • D1: Binomial Expansion
          • D2: Sequences
          • D3: Sigma Notation
          • D4: Arithmetic Sequences
          • D5: Geometric Sequences
          • D6: Modelling with Sequences
        • E: Trigonometry
          • E1: Trigonometry
          • E2: Small Angle Approximation
          • E3: Trig Graphs
          • E4: Further Trigonometry
          • E5: Trigonometric Identities
          • E6: Compound Angles & Equivalent Forms
          • E7: Trig Equations
          • E8: Proving Trigonometric Identities
          • E9: Trigonometry in Context
        • F: Exponentials & Logarithms
          • F1: Exponentials
          • F2: Exponential Models
          • F3: Logarithms
          • F4: Laws of Logarithms
          • F5: Exponential & Logarithmic Equations
          • F6: Reduction to Linear Form
          • F7: Exponential Growth & Decay
        • G: Differentiation
          • G1: Differentiation from First Principles
          • G2: Differentiation
          • G3: Gradients
          • G4: Further Differentiation
          • G5: Implicit Differentiation & Parametric Differentiation
          • G6: Forming Differential Equations
        • H: Integration
          • H1: Fundamental Theorem of Calculus
          • H2: Indefinite Integrals
          • H3: Definite Integrals & Parametric Integration
          • H4: Integration as the Limit of a Sum
          • H5: Further Integration
          • H6: Integration with Partial Fractions
          • H7: Differential Equations
          • H8: Differential Equations in Context
        • I: Numerical Methods
          • I1: The Change of Sign Method
          • I2: The x=g(x) Method & The Newton-Raphson Method
          • I3: Numerical Integration
          • I4: Numerical Methods in Context
        • J: Vectors
          • J1: Introducing Vectors
          • J2: Magnitude & Direction of a Vector
          • J3: Resultant & Parallel Vectors
          • J4: Position Vectors
          • J5: Vector Problems
        • K: Statistical Sampling
          • K1: The Large Data Set & Sampling Methods
        • L: Data Presentation & Interpretation
          • L1: Box Plots, Cumulative Frequency & Histograms
          • L2: Scatter Graphs
          • L3: Central Tendency & Variation
          • L4: Outliers & Cleaning Data
        • M: Probability
          • M1: Venn Diagrams, Tree Diagrams & Two-Way Tables
          • M2: Conditional Probability
          • M3: Modelling with Probability
        • N: Statistical Distributions
          • N1: Discrete Random Variables & The Binomial Distribution
          • N2: The Normal Distribution
          • N3: Appropriate Distributions
        • O: Hypothesis Testing
          • O1: Introducing Hypothesis Testing
          • O2: Binomial Hypothesis Testing
          • O3: Sample Means Hypothesis Testing
        • P: Quantities & Units in Mechanics
          • P1: Quantities & Units in Mechanics
        • Q: Kinematics
          • Q1: Displacement, Velocity & Acceleration
          • Q2: Graphs of Motion
          • Q3: SUVAT
          • Q4: Calculus in Kinematics
          • Q5: Projectiles
        • R: Forces and Newton's Laws
          • R1: Introducing Forces & Newton's First Law
          • R2: Newton's Second Law
          • R3: Weight & Tension
          • R4: Newton's Third Law and Pulleys
          • R5: F=ma & Differential Equations
          • R6: The Coefficient of Friction
        • S: Moments
          • S1: Moments
      • Revision Tips Videos
      • Enrolment Work
      • Teaching Order Year 1
        • 101: Linear Graphs
        • 102: Quadratic Graphs
        • 103: Indices & Surds 1
        • 104: Indices & Surds 2
        • 105: Exponentials and Logarithms
        • 106: Logarithms 1
        • 107: Logarithms 2
        • 108: e^x and ln(x)
        • 109: Logarithms 3
        • 110: Exponential Growth & Decay 1
        • 111: Exponential Growth & Decay 2
        • 112: Polynomials 1
        • 113: Polynomials 2
        • 114: Graph Sketching Polynomials
        • 115. Graph Sketching Rational Functions
        • 116: Graph Transformations
        • 117: Coordinate Geometry
        • 118: Equation of a Circle 1
        • 119: Equation of a Circle 2
        • 120: Reduction to Linear Form 1
        • 121: Reduction to Linear Form 2
        • 122: Inequalities 1
        • 123 Inequalities 2
        • 124: Differentiation from First Principles
        • 125: Graphs of Motion
        • 126: Constant Acceleration SUVAT 1
        • 127: Constant Acceleration SUVAT 2
        • 128: Differentiation
        • 129: Differentiation - Tangents & Normals
        • 130: Differentiation - Stationary Points
        • 131: Second Derivatives and Points of Inflection 1
        • 132: Second Derivatives and Points of Inflection 2
        • 133: Differentiation - Optimisation
        • 134: Linear Regression & PMCC
        • 135: Probability 1
        • 136: Probability 2
        • 137: Mean and Standard Deviation
        • 138: Outliers and Using Statistical Diagrams
        • 139: Pascal's Triangle & nCr
        • 140: Binomial Expansion
        • 141: Discrete Random Variables
        • 142: Binomial Distribution
        • 143: Binomial Hypothesis Testing 1
        • 144: Binomial Hypothesis Testing 2
        • 145: Integration
        • 146: Integration - Finding Areas
        • 147: The Trapezium Rule
        • 148: Integration - Areas between Curves
        • 149: Variable Acceleration 1
        • 150: Variable Acceleration 2
        • 151: Proof
        • 152: Basic Trigonometry
        • 153: Radians, Sectors & Arc Length
        • 154: Vectors
        • 155: Introducing Forces & Equilibrium
        • 156: Newton's 2nd Law
        • 157: Connected Particles 1
        • 158: Connected Particles 2
        • 159: Trigonometric Equations 1
        • 160: Trigonometric Equations 2
        • 161: Trigonometric Identities 1
        • 162: Trigonometric Identities 2
        • 163: Trigonometric Modelling
        • 164: The Coefficient of Friction
        • 165: Blocks on a Slope
        • 166: Blocks and Pulleys on a Slope
      • Teaching Order Year 2
        • 201: Domain and Range
        • 202: Domain, Range & Composite Functions
        • 203: Even, Odd and Periodic Functions
        • 204: Graph Transformations
        • 205: Inverse Functions
        • 206: Modulus Functions
        • 209: Sequences - Inductive Definitions
        • 210: Arithmetic Sequences
        • 211: Moments 1
        • 212: Moments 2
        • 213: Geometric Sequences
        • 214: Sequences and Series
        • 215: Inverse Trigonometric Functions
        • 216: sec(x), cosec(x) & cot(x) 1
        • 217: sec(x), cosec(x) & cot(x) 2
        • 218: Compound Angle Formulae
        • 219: Double Angle Formulae 1
        • 220: Double Angle Formulae 2
        • 221: Differentiation - Standard Functions
        • 222: Differentiation - The Chain Rule
        • 223: Differentiation - Connected Rates of Change
        • 224: Differentiation - The Product Rule
        • 225: Differentiation - The Quotient Rule
        • 226: Choosing Differentiation Methods
        • 227: Implicit Differentiation 1
        • 228: Implicit Differentiation 2
        • 229: Reversing the Chain Rule
        • 230: Integration by Substitution 1
        • 231: Integration by Substitution 2
        • 232: Integration by Parts 1
        • 233: Integration by Parts 2
        • 234: Partial Fractions 1
        • 235: Partial Fractions 2
        • 236: Choosing Integration Methods
        • 237: Numerical Methods - Change of Sign Method
        • 238: Numerical Methods - x=g(x) Method
        • 239: Numerical Methods - Newton-Raphson Method
        • 240: Differential Equations 1
        • 241: Differential Equations 2
        • 242: Forming Differential Equations
        • 243: 2D Constant Acceleration - SUVAT
        • 244: 2D Variable Acceleration
        • 245: Projectiles 1
        • 246: Projectiles 2
        • 247: Binomial Expansion 1
        • 248: Binomial Expansion 2
        • 249: 3D Vectors
        • 250: Trigonometry - Harmonic Forms 1
        • 251: Trigonometry - Harmonic Forms 2
        • 252: Small Angle Approximation
        • 253: The Normal Distribution - Finding Probabilities
        • 254: The Normal Distribution - Inverse Normal
        • 255: The Normal Distribution - Approximations
        • 256: Parametric Equations
        • 257: Parametric Differentiation 1
        • 258: Parametric Differentiation 2
        • 259: Parametric Integration
        • 260: Proof by Contradiction
        • 261: Sample Means Hypothesis Testing
        • 262: PMCC Hypothesis Testing
      • Casio Classwiz How To
      • Bumper Book of Integrals
      • Maths Revision Cards
    • A-Level Maths Textbook
    • A-Level Further Maths
      • PURE
        • A: Proof
          • A1: Proof by Induction
        • B: Complex Numbers
          • B1: Introducing Complex Numbers
          • B2: Working with Complex Numbers
          • B3: Complex Conjugates
          • B4: Introducing the Argand Diagram
          • B5: Introducing Modulus-Argument Form
          • B6: Multiply and Divide in Modulus-Argument Form
          • B7: Loci with Argand Diagrams
          • B8: De Moivre's Theorem
          • B9: z = re^(iθ)
          • B10: nth Roots of Unity
          • B11: Geometrical Problems
        • C: Matrices
          • C1: Introducing Matrices
          • C2: The Zero & Identity Matrices
          • C3: Matrix Transformations
          • C4: Invariance
          • C5: Determinants
          • C6: Inverse Matrices
          • C7: Simultaneous Equations
          • C8: Geometrical Interpretation
          • AQA C9: Factorising Determinants
          • AQA C10: Eigenvalues and Eigenvectors
          • AQA C11: Diagonalisation
          • EXTRA PURE C12: Cayley-Hamilton Theorem
        • D: Further Algebra & Functions
          • D1: Roots of Polynomials
          • D2: Forming New Equations
          • D3: Summations
          • D4: Method of Differences
          • D5: Introducing Maclaurin Series
          • D6: Standard Maclaurin Series
          • AQA D7: Limits and l'HoĚ‚pital's Rule
          • AQA D8: Polynomial Inequalities
          • AQA D9: Rational Function Inequalities
          • AQA D10: Modulus of Functions
          • AQA D11: Reciprocal Graphs
          • AQA D12: Linear Rational Functions
          • AQA D13: Quadratic Rational Functions
          • AQA D14: Discriminants
          • AQA D15: Conic Sections
          • AQA D16: Transformations
        • E: Further Calculus
          • E1: Improper Integrals
          • E2: Volumes of Revolution
          • E3: Mean Value
          • E4: Partial Fractions
          • E5: Differentiating Inverse Trig
          • E6: Integrals of the form (a^2-x^2)^(-½) and (a^2+x^2)^(-1)
          • AQA E7: Arc Length and Sector Area
          • AQA E8: Reduction Formulae
          • AQA E9: Limits
        • F: Further Vectors
          • F1: Equations of Lines
          • F2: Equations of Planes
          • F3: The Scalar Product
          • F4: Perpendicular Vectors
          • F5: Intersections
          • F6: The Vector Product
        • G: Polar Coordinates
          • G1: Polar Coordinates
          • G2: Polar Curves
          • G3: Polar Integration
        • H: Hyperbolic Functions
          • H1: Hyperbolic Functions
          • H2: Hyperbolic Calculus
          • H3: Hyperbolic Inverse
          • H4: Hyperbolic Inverse
          • H5: Hyperbolic Integration
          • AQA H6: Hyperbolic Identities
          • AQA H7: Hyperbolic Identities
        • I: Differential Equations
          • I1: 1st Order Differential Equations - Integrating Factors
          • I2: 1st Order Differential Equations - Particular Solutions
          • I3: Modelling
          • I4: 2nd Order Homogeneous Differential Equations
          • I5: 2nd Order Non-Homogeneous Differential Equations
          • I6: 2nd Order Non-Homogeneous Differential Equations
          • I7: Simple Harmonic Motion
          • I8: Damped Oscillations
          • I9: Systems of Differential Equations
          • AQA I10: Hooke's Law
          • AQA I11: Damping Force
        • J: Numerical Methods
          • AQA J1: Mid-Ordinate Rule & Simpson's Rule
          • AQA J2: Euler's Step by Step Method
          • AQA J3: Euler's Improved Step by Step Method
      • OCR MEI Modelling with Algorithms
        • A: Tracing an Algorithm
        • B: Bin Packing
        • C: Sorting Algorithms
        • D: Graph Theory
        • E: Minimum Spanning Trees
        • F: Dijkstra's Algorithm
        • G: Critical Path Analysis
        • H: Network Flows
        • I: Linear Programming
        • J: Simplex Algorithm
        • K: LP Solvers
      • OCR MEI Statistics a / Minor
        • A: PMCC
        • B: Linear Regression
        • C: PMCC Hypothesis Testing
        • D: Spearman’s Rank
        • E: Chi-Squared Contingency Table Tests
        • F: Discrete Random Variables
        • G: Discrete Uniform Distributions
        • H: Geometric Distributions
        • I: Binomial Distribution
        • J: Poisson Distribution
        • K: Goodness of Fit Tests
      • OCR MEI Mechanics a / Minor
        • A: Energy
        • B: Power
        • C: Friction
        • D: Momentum & Impulse
        • E: Collisions
        • F: Moments
        • G: Centre of Mass
        • H: Dimensional Analysis
      • Teaching Order Year 1
        • 01: Core Pure - Matrices: Basics
          • a. Introducing Matrices
          • b. The Zero & Identity Matrices
        • 02: Core Pure - Matrices: 2D Transformations
        • 03: Core Pure - Matrices: Invariant Points
        • 04: Core Pure - Matrices: 3D Transformations
        • 05: Modelling with Algorithms - Algorithms and Bin Packing
          • a. Tracing an Algorithm
          • b. Bin Packing
        • 06: Modelling with Algorithms - Sorting Algorithms
        • 07: Modelling with Algorithms - Graph Theory
        • 08: Modelling with Algorithms - Kruskal's, Prim's & Dijkstra's Algorithms
          • a. Minimum Spanning Trees
          • b. Dijkstra's Algorithm
        • 09: Core Pure - Complex Numbers: Basics
          • a. Introducing Complex Numbers
          • b. Working with Complex Numbers
          • c. Complex Conjugates
        • 10: Core Pure - Complex Numbers: Argand Diagrams
          • a. Introducing the Argand Diagram
          • b. Introducing Modulus-Argument Form
          • c. Multiply and Divide in Modulus-Argument Form
          • d. Loci with Argand Diagrams
        • 11: Modelling with Algorithms - Critical Path Analysis
        • 12: Modelling with Algorithms - Network Flows
        • 13: Modelling with Algorithms - Graphical Linear Programming
        • 14: Modelling with Algorithms - LP Solver: Shortest Path, CPA, Network Flow
        • 15: Modelling with Algorithms - Simplex Algorithm
        • 16: Modelling with Algorithms - LP Solver: Matching, Transportation Problem
        • 17: Core Pure - Series: Using Formulae
        • 18: Core Pure - Series: Method of Differences
        • 19: Core Pure - Matrices: Inverses, Singular Matrices, Simultaneous Equatio
          • a. Determinants
          • b. Inverse Matrices
          • c. Simultaneous Equations
        • 20: Core Pure - Matrices: Invariant Lines
        • 21: Core Pure - Roots of Polynomials
          • a. Roots of Polynomials
          • b. Forming New Equations
        • 22: Core Pure - Proof by Induction: Series
        • 23: Core Pure - Proof by Induction: Sequences
        • 24: Core Pure - Proof by Induction: Matrices
        • 25: Core Pure - Vectors: Scalar Product
          • a. The Scalar Product
          • b. Perpendicular Vectors
        • 26: Core Pure - Vectors: Planes
          • a. Geometrical Interpretation
          • b. Equations of Planes
        • 27: Statistics - PMCC
        • 28: Statistics - Linear Regression
        • 29: Statistics - PMCC Hypothesis Testing
        • 30: Statistics - Spearman's Rank Correlation Coefficient
        • 31: Statistics - Chi-Squared Contingency Table Tests
        • 32: Statistics - Discrete Random Variables
        • 33: Statistics - Discrete Uniform Distribution
        • 34: Statistics - Geometric Distribution
        • 35: Statistics - Binomial Distribution
        • 36: Statistics - Poisson Distribution
        • 37: Statistics - Goodness of Fit Tests
      • Teaching Order Year 2
        • 01: Core Pure - Matrices: Determinant and Inverse of a 3x3 Matrix
          • a. Determinants
          • b. Inverse Matrices
          • c. Simultaneous Equations
        • 02: Core Pure - Polar Curves
          • a. Polar Coordinates
          • b. Polar Curves
        • 03: Core Pure - Vectors: Lines
          • a. Lines
          • b. Intersections
        • 04: Mechanics - Energy
        • 05: Mechanics - Power
        • 06: Mechanics - Friction
        • 07: Mechanics - Momentum & Impulse
        • 08: Mechanics - Collisions
        • 09: Mechanics - Moments
        • 10: Mechanics - Centre of Mass
        • 11: Mechanics - Dimensional Analysis
        • 12: Core Pure - Vectors: Vector Product
        • 13: Core Pure - Complex Numbers: De Moivre's Theorem & Roots of Unity
          • a. De Moivre's Theorem
          • b. z = re^(iθ)
          • c. nth Roots of Unity
          • d. Geometrical Problems
        • 14: Core Pure - Partial Fractions & Series
          • a. Method of Differences with Partial Fractions
          • b. Partial Fractions
        • 15: Core Pure - Proof by Induction: Divisibility
        • 16: Core Pure - Calculus: Improper Integrals
        • 17: Core Pure - Calculus: Mean Value
        • 18: Core Pure - Calculus: Areas with Polar Curves
        • 19: Core Pure - Calculus: Inverse Trig Functions
          • a. Differentiating Inverse Trig
          • b. Integrals of the form (a^2-x^2)^(-½) and (a^2+x^2)^(-1)
        • 20: Core Pure - Hyperbolic Functions
          • a. Hyperbolic Functions
          • b. Hyperbolic Calculus
          • c. Hyperbolic Inverse
          • d. More Hyperbolic Inverse
          • e. Hyperbolic Integration
        • 21: Core Pure - Series: Maclaurin Series
          • a. Introducing Maclaurin Series
          • b. Standard Maclaurin Series
        • 22: Core Pure - Differential Equations: First Order
          • a. Integrating Factors
          • b. Particular Solutions
          • c. Modelling
        • 23: Core Pure - Differential Equations: Second Order
          • a. 2nd Order Homogeneous Differential Equations
          • b. 2nd Order Non-Homogeneous Differential Equations
          • c. Examples
        • 24: Core Pure - Differential Equations: Damped Simple Harmonic Motion
          • a. Simple Harmonic Motion
          • b. Damped Oscillations
        • 25: Core Pure - Differential Equations: Systems of DEs
        • 26: Core Pure - Calculus: Volumes of Revolution
      • Further Maths Revision Cards
    • Core Maths Level 3 Certificate
      • Core Maths Resources
      • Teaching Videos
        • AQA Mathematical Studies Paper 1
        • AQA Mathematical Studies Paper 2A
        • Basics
    • GCSE to A-Level Maths Bridging the Gap
    • GCSE Maths
      • N: Number
        • N1
        • N2
        • N3
        • N4
        • N5
        • N6
        • N7
        • N8
        • N9
        • N10
        • N11
        • N12
        • N13
        • N14
        • N15
        • N16
      • A: Algebra
        • A1
        • A2
        • A3
        • A4
        • A5
        • A6
        • A7
        • A8
        • A9
        • A10
        • A11
        • A12
        • A13
        • A14
        • A15
    • Legacy A-Level Maths & Further Maths 2004
      • AQA C1
        • 1. Coordinate Geometry
        • 2. Surds
        • 3. Quadratics
        • 4. Inequalities
        • 5. Polynomials
        • 6: Equations of Circles
        • 7: Differentiation
        • 8: Integration
      • AQA C2
        • 1. Indices
        • 2. Differentiation & Integration
        • 3. Logarithms
        • 4. Graph Transformations
        • 5. Sequences & Series
        • 6: Binomial Expansion
        • 7: Trigonometry 1
        • 8: Trigonometry 2
      • AQA C3
        • 1. Exponentials & Logarithms
        • 2. Functions
        • 3. Modulus Functions
        • 4. Graph Transformations
        • 5. Trigonometry
        • 6. Differentiation
        • 7. Integration
        • 8. Solids of Revolution
        • 9. Numerical Methods
      • AQA C4
        • 1. Partial Fractions
        • 2. Parametric Equations
        • 3. Binomial Expansion
        • 4. Trigonometry
        • 5. Differential Equations
        • 6. Implicit Equations
        • 7. Vectors
      • AQA D1
        • 1. Tracing an Algorithm
        • 2. Sorting Algorithms
        • 3. Graph Theory
        • 4. Kruskal's Algorithm & Prim's Algorithm
        • 5. Dijkstra's Algorithm
        • 6. Bipartite Graphs
        • 7. Chinese Postman Algorithm
        • 8. The Travelling Salesperson Problem
        • 9. Linear Programming
      • AQA S1
        • 1. Mean & Standard Deviation
        • 2. Probability
        • 3. Binomial Probability
        • 4. The Normal Distribution
        • 5. Central Limit Theorem & Estimation
        • 6. Confidence Intervals
        • 7. Linear Regression
        • 8. The Product Moment Correlation Coefficient
      • AQA FP1
      • OCR MEI C1
        • 1. Surds
        • 2. Coordinate Geometry
        • 3. Quadratics
        • 4. Inequalities
        • 5. Indices
        • 6. Translations
        • 7. Polynomials
        • 8. Binomial Expansion
        • 9. Equations of Circles
        • 10. Proof
      • OCR MEI C2
        • 1. Exponentials & Logarithms
        • 2. Trigonometry 1
        • 3. Differentiation 1
        • 4. The Trapezium Rule & Integration
        • 5. Sequences & Series
        • 6. Graph Transformations
        • 7. Trigonometry 2
        • 8. Differentiation 2
      • OCR MEI C3
        • 1. Exponentials & Logarithms
        • 2. Functions
        • 3. Modulus Functions
        • 4. Differentiation Rules
        • 5. Differentiating Functions
        • 6. Implicit Differentiation
        • 7. Integration
        • 8. Proof
      • OCR MEI C4
        • 1. Trigonometry
        • 2. Parametric Equations
        • 3. Binomial Expansion
        • 4. Vectors
        • 5. Partial Fractions
        • 6. Differential Equations
        • 7. The Trapezium Rule & Volumes of Revolution
        • 8. Comprehension
      • OCR MEI S1
        • 1. Probability
        • 2. Mean & Standard Deviation
        • 3. Discrete Random Variables
        • 4. Permutations & Combinations
        • 5. Binomial Probabilities
        • 6. Hypothesis Testing
        • 7. GCSE Recap & Odd and Ends
      • OCR MEI S2
        • 1. Correlation & Regression
        • 2. The Poisson Distribution
        • 3. The Normal Distribution
        • 4. The Chi-Squared Contingency Table Test
    • Legacy GCSE Maths Foundation
      • 01. Addition, Subtraction, Multiplication & Division
      • 02. Rounding & Negative Numbers
      • 03. Fractions
      • 04. Primes, Factors, Multiples, Squares, Cubes & Reciprocals
      • 05. Fractions, Decimals & Percentages
      • 06. Time, Money, Best Buys, Currency Exchange & Simple Interest
      • 07. Ratio & Speed, Distance, Time
      • 08. Types of Data, Questionnaires & Bar Charts
      • 09. Mean, Median, Mode & Range
      • 10. Pie Charts & Stem and Leaf Diagrams
      • 11. Frequency Polygons, Histograms & Scatter Graphs
      • 12. Probability
      • 13. Algebraic Expressions
      • 14. Solving Equations & Trial and Improvement
      • 15. Coordinates & Plotting Graphs
      • 16. Sequences & Inequalities
      • 17. Angles & Parallel Lines
      • 18. Triangles & Symmetry
      • 19. Quadrilaterals, Polygons & Tessellation
      • 20. Bearings & Constructions
      • 21. Circles
      • 22. Compound Shapes, 3D Shapes, Elevations & Nets
      • 23. Translations, Reflections, Rotations & Enlargement
      • 24. Pythagoras' Theorem & Metric to Imperial Conversion
TLMaths

IN STOCK!

"TLMaths: The A-Level Maths textbook"

by Jack Brown & Dani Hosford

Click here to go to the purchase page and for the full worked solutions

A-Level Maths

A-Level Further Maths

Core Maths Level 3 Certificate

GCSE to A-Level Maths Bridging the Gap

GCSE Maths

LEGACY A-Level Maths 2004

LEGACY GCSE Maths Foundation

TLMaths began on 15th April 2013.

This site was born on 19th May 2020.

Hi, my name is Jack Brown and I am a full-time teacher and the Subject Leader of A-Level Maths at Barton Peveril Sixth Form College in Eastleigh, England. I have been making YouTube videos on Teaching & Learning Mathematics since 2013.

GCSE Maths [Under Construction] - 680 videos - 50+ hours

A-Level Maths [Complete] - 1126 videos - 103+ hours

A-Level Further Maths (Core Pure) [Complete] - 649 videos - 60+ hours

OCR MEI Modelling with Algorithms [Complete] - 122 videos - 12+ hours

OCR MEI Statistics Minor [Complete] - 120 videos - 12+ hours

OCR MEI Mechanics Minor [Complete] - 150 videos - 11+ hours

+ lots more!

TLMaths Bumper Books

These can be purchased through TES.

Video Solutions

TLMaths Bumper Worksheets

These can be downloaded for free through TES.

Google Sites
Report abuse
Page details
Page updated
Google Sites
Report abuse